Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 27(5): 603-610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629098

RESUMO

Objectives: This study aimed to investigate the effects of zingerone (ZNG) treatment on testicular toxicity in rats induced by sodium arsenite (SA). Materials and Methods: In the study, five groups were formed (n=7) and the experimental groups were designated as follows; Vehicle group, ZNG group, SA group, SA+ZNG 25 group, and SA+ZNG 50 group. While SA was administered orally to rats at 10 mg/kg/bw, ZNG was given to rats orally at 25 and 50 mg/kg/bw doses for 14 days. Results: As a result of the presented study, an increase was observed in the MDA contents of the testicular tissue of the rats administered SA, while significant decreases were observed in GSH levels, SOD, CAT, and GPx activities. The mRNA transcript levels of the pro-inflammatory genes NF-κB, TNF-α, IL-1ß, and IL-6 were triggered after SA administration. Additionally, SA administration caused inflammation by increasing RAGE, NLRP3, and JAK-2/STAT3 gene expression. Moreover, endoplasmic reticulum (ER) stress occurred in the testicular tissues of SA-treated rats and thus ATF-6, PERK, IRE1, and GRP78 genes were up-regulated. SA caused apoptosis by up-regulating Bax and Caspase-3 expressions and inhibiting Bcl-2 expression in testicles. SA caused histological irregularities in the testicles, resulting in decreased sperm quality. Conclusion: ZNG treatment reduced SA-induced oxidative stress, ER stress, inflammation, apoptosis, and histological irregularities in the testicles while increasing sperm quality. As a result, it was observed that ZNG could alleviate the toxicity caused by SA in the testicles.

3.
Environ Toxicol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530053

RESUMO

Lead acetate (PbAc) is a compound that produces toxicity in many tissues after exposure. Sinapic acid (SNP) possesses many biological and pharmacological properties. This study aimed to investigate the efficacy of SNP on the toxicity of PbAc in lung tissue. PbAc was administered orally at 30 mg/kg and SNP at 5 or 10 mg/kg for 7 days. Biochemical, genetic, and histological methods were used to investigate inflammatory, apoptotic, endoplasmic reticulum stress, and oxidative stress damage levels in lung tissue. SNP administration induced PbAc-reduced antioxidant (GSH, SOD, CAT, and GPx) and expression of HO-1 in lung tissue. It also reduced MDA, induced by PbAc, and thus alleviated oxidative stress. SNP decreased the inflammatory markers NF-κB, TNF-α and IL-1ß levels induced by PbAc in lung tissue and exhibited anti-inflammatory effect. PbAc increased apoptotic Bax, Apaf-1, and Caspase-3 mRNA transcription levels and decreased anti-apoptotic Bcl-2 in lung tissues. SNP decreased apoptotic damage by reversing this situation. On the other hand, SNP regulated these markers and brought them closer to the levels of the control group. PbAc caused prolonged ER stress by increasing the levels of ATF6, PERK, IRE1α, GRP78 and this activity was stopped and tended to retreat with SNP. After evaluating all the data, While PbAc caused toxic damage in lung tissue, SNP showed a protective effect by reducing this damage.

4.
J Biochem Mol Toxicol ; 38(2): e23643, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348713

RESUMO

Antimicrobial agent resistance has become a growing health issue across the world. Colistin (COL) is one of the drugs used in the treatment of multidrug-resistant bacteria resulting in toxic effects. Naringin (NRG), a natural flavonoid, has come to the fore as its antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of the present study was to determine whether NRG has protective effects on COL-induced toxicity in testicular tissue. Thirty-five male Spraque rats were randomly divided into five groups (n = 7 per group): Control, COL, NRG, COL + NRG 50, COL + NRG 100. COL (15 mg/kg b.w., i.p., once per/day), and NRG (50 or 100 mg/kg, oral, b.w./once per/day) were administered for 7 days. The parameters of oxidative stress, inflammation, apoptosis, and autophagic damage were evaluated by using biochemical, molecular, western blot, and histological methods in testicular issues. NRG treatment reversed the increased malondialdehyde level and reduced antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione) levels due to COL administration (p < 0.001), and oxidative stress damage was mitigated. Nuclear factor erythroid 2-related factor-2 pathway, one of the antioxidant defence systems, was stimulated by NRG (p < 0.001). NRG treatment reduced the levels of markers for the pathways of apoptotic (p < 0.001) and autophagic (p < 0.001) damages induced by COL. Sperm viability and the live/dead ratio were reduced by COL but enhanced by NRG treatment. Testicular tissue integrity was damaged by COL but showed a tendency to improve by NRG. In conclusion, COL exhibited toxic effect on testicular tissue by elevating the levels of oxidative stress, apoptosis, autophagy, inflammation, and tissue damage. NRG demonstrated a protective effect by alleviating toxic damage.


Assuntos
Antioxidantes , Flavanonas , Proteínas Proto-Oncogênicas c-akt , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Colistina/efeitos adversos , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Sêmen/metabolismo , Estresse Oxidativo , Testículo/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Apoptose
5.
Iran J Basic Med Sci ; 27(4): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419893

RESUMO

Objectives: In the present study, the potential protective effects of zingerone (ZNG) against sciatic nerve damage caused by sodium arsenite (SA), a common environmental pollutant, were evaluated by various biochemical, molecular, and histological methods. Materials and Methods: In the study, SA and ZNG were given to 35 male Sprague Dawley rats for 14 days. At the end of the period, the sciatic nerve tissues were taken and the markers involved in oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis were analyzed. Results: The data obtained showed that SA decreased glutathione (GSH) levels and increased malondialdehyde (MDA) levels in the sciatic nerve tissue. However, it was determined that these markers approached the control group levels due to the anti-oxidant properties of ZNG. While SA triggered endoplasmic reticulum stress and apoptosis pathways, ZNG suppressed them. Moreover, SA up-regulated inflammatory markers such as nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß), and neuronal nitric oxide synthases (nNOS) in the sciatic nerves and caused neuro-inflammation and inhibited cell survival by suppressing serine/threonine-protein kinase 2 (Akt2) and forkhead box protein O1 (FOXO1) genes. It has also been shown histopathologically that SA causes degeneration in the sciatic nerves. In contrast, ZNG suppressed neuro-inflammation, activated Akt2/FOXO1 signaling, and repaired histological irregularities. Conclusion: In general, SA caused oxidative stress, inflammation, ER stress, and apoptosis in the sciatic nerves of rats, causing damage to the tissues, however, ZNG suppressed these pathways and protected the sciatic nerves from the destructive effect of SA.

6.
Biol Trace Elem Res ; 202(3): 1164-1173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37393388

RESUMO

Acetaminophen (N-acetyl-p-aminophenol, APAP, or paracetamol) is one of the drugs that may be damaging to the kidneys and liver when used in excess. In this context, it is vital to treat these side effects on the liver and kidneys with various antioxidants. Diseases have been treated using herbal and mineral remedies since ancient times. The mineral boron, found in rocks and water, is a crucial ingredient with multiple positive biological effects. The primary objective of this research is to determine whether or not boron has a protective effect against the toxicity generated by APAP in rats. Male Sprague-Dawley rats were pretreated orally with boron-source sodium pentaborate (B50 and B100 mg/kg) for 6 days by gastric gavage in order to counteract the toxicity caused by a single dose of APAP (1g/kg). APAP increased lipid peroxidation as well as serum BUN, creatinine concentrations, and serum activities of AST, ALP, and ALT by consuming GSH in liver and kidney tissues. In addition, the activity of antioxidative enzymes, including SOD, CAT, and GPx, was diminished. Inflammatory indicators such as TNF-α, IL-1ß, and IL-33 were elevated in conjunction with APAP toxicity. In kidney and liver tissues, APAP dramatically increased the activity of caspase-3 and triggered apoptosis. Sodium pentaborate therapy on a short-term basis reduced biochemical levels despite these effects of APAP. This study showed that boron protects rats from the harmful effects of APAP by acting as an anti-inflammatory, antioxidant, and anti-apoptotic agent.


Assuntos
Acetaminofen , Boratos , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Masculino , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Citocinas/metabolismo , Peroxidação de Lipídeos , Boro/farmacologia , Ratos Sprague-Dawley , Estresse Oxidativo , Antioxidantes/metabolismo , Fígado/metabolismo , Minerais/metabolismo , Apoptose , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
7.
Int Immunopharmacol ; 126: 111264, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016342

RESUMO

Acute Kidney Injury (AKI) is a major factor in sepsis-related mortality and may occur due to lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria that triggers a systemic acute inflammatory response. Quinacrine's (QC) renoprotective properties in sepsis and the underlying mechanism, however, are still not fully understood. This study was done to investigate the anti-inflammatory, antioxidative, and anti-apoptotic effects of QC, a phospholipase A2 (PLA2) inhibitor, against LPS-induced AKI. Rats were randomly divided into five groups: control group, QC30 group, LPS group, LPS+QC 10 group, and LPS+QC 30 group. The rats were administered intraperitoneally QC (10 and 30 mg/kg) for 3 days (once a day) prior to injection of LPS (3 mg/kg). Six hours after the LPS injection, the histopathological changes, oxidative stress, inflammation, and apoptosis in the collected kidney tissues were detected by hematoxylin and eosin staining, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and immunohistochemistry staining, respectively. QC pretreatment could successfully attenuate LPS-induced AKI, as evidenced by a decrease in tissue histopathological injury. Meanwhile, QC alleviated LPS-induced kidney oxidative stress; it reduced MDA levels and increased levels of SOD, CAT, GPX, and GSH. LPS-induced elevations in kidney TLR4, NF-κB, TNF-α, IL-1ß, IL-6, PLA2, caspase 3, and Bax contents were significantly attenuated in QC-treated groups. Our findings revealed a significant effect of QC: protecting against LPS-induced AKI through inhibition of PLA2 and decreasing inflammation, oxidative stress, and apoptosis. To treat LPS-induced AKI, QC may be an effective substance with an excellent protection profile.


Assuntos
Injúria Renal Aguda , Sepse , Ratos , Animais , NF-kappa B , Fator de Necrose Tumoral alfa/farmacologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like , Quinacrina/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Rim/patologia , Inflamação/patologia , Sepse/patologia
8.
Metab Brain Dis ; 39(4): 509-522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108941

RESUMO

Chlorpyrifos (CPF), considered one of the most potent organophosphates, causes a variety of human disorders including neurotoxicity. The current study was designed to evaluate the efficacy of hesperidin (HSP) in ameliorating CPF-induced neurotoxicity in rats. In the study, rats were treated with HSP (orally, 50 and 100 mg/kg) 30 min after giving CPF (orally, 6.75 mg/kg) for 28 consecutive days. Molecular, biochemical, and histological methods were used to investigate cholinergic enzymes, oxidative stress, inflammation, and apoptosis in the brain tissue. CPF intoxication resulted in inhibition of acetylcholinesterase (AChE) and butrylcholinesterase (BChE) enzymes, reduced antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH)], and elevation of malondialdehyde (MDA) levels and carbonic anhydrase (CA) activities. CPF increased histopathological changes and immunohistochemical expressions of 8-OHdG in brain tissue. CPF also increased levels of glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NF-κB) while decreased levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). Furthermore, CPF increased mRNA transcript levels of caspase-3, Bax, PARP-1, and VEGF, which are associated with apoptosis and endothelial damage in rat brain tissues. HSP treatment was found to protect brain tissue by reducing CPF-induced neurotoxicity. Overall, this study supports that HSP can be used to reduce CPF-induced neurotoxicity.


Assuntos
Apoptose , Clorpirifos , Hesperidina , Síndromes Neurotóxicas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Clorpirifos/toxicidade , Apoptose/efeitos dos fármacos , Ratos , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ratos Wistar , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inseticidas/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Inibidores da Colinesterase/farmacologia
9.
Biol Trace Elem Res ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133725

RESUMO

Mercuric chloride (HgCl2) is a heavy metal that is toxic to the human body. Carvacrol (CAR) is a flavonoid found naturally in plants and has many biological and pharmacological activities including anti-inflammatory, antioxidant, and anticancer activities. This study aimed to investigate the efficacy of CAR in HgCl2-induced testicular tissue damage. HgCl2 was administered intraperitoneally at a dose of 1.23 mg/kg body weight alone or in combination with orally administered CAR (25 mg/kg and 50 mg/kg body weight) for 7 days. Biochemical and histological methods were used to investigate oxidative stress, inflammation, apoptosis, and autophagy pathways in testicular tissue. CAR treatment increased HgCl2-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels. In addition, CAR reduced MDA levels, a marker of lipid peroxidation. CAR decreased the levels of inflammatory mediators NF-κB, TNF-α, IL-1ß, COX-2, iNOS, MAPK14, MAPK15, and JNK. The increases in apoptotic Bax and Caspase-3 with HgCl2 exposure decreased with CAR, while the decreased antiapoptotic Bcl-2 level increased. CAR reduced HgCl2-induced autophagy damage by increasing Beclin-1, LC3A, and LC3B levels. Overall, the data from this study suggested that testicular tissue damage associated with HgCl2 toxicity can be mitigated by CAR administration.

10.
J Trace Elem Med Biol ; 80: 127315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801787

RESUMO

BACKGROUND: Heavy metals are one of the environmental pollutants. Lead (Pb) is one of the most common of these heavy metals. In this study, it was aimed at investigating the effects of syringic acid (SA) against testicular toxicity in rats administered lead acetate (PbAc). METHODS: In the present study, a total of 35 Sprague-Dawley rats, 7 in each group, were used. The rats were divided into 5 groups, with 7 male rats in each group. Rats were given PbAc and SA orally for 7 days. The effects of PbAc and SA on epididymal sperm quality and apoptosis, inflammation, oxidative stress and histopathological changes in testicular tissue were determined. RESULTS: While PbAc disrupted the seminiferous tubules and produced atrophic images, SA corrected these histological abnormalities. PbAc adminisration significantly reduced the levels of SOD, GSH, GPx, CAT, NRF-2 and NQO1 and significantly increased the levels of MDA and 8-OHdG in the testicular tissue of rats, while SA improved this situation. NF-κB, TNF-α, IL-1ß, NLRP3, RAGE, ATF6, PERK, IRE1, CHOP, and GRP78 genes expression levels increased with PbAc administration, however these levels decreased with SA administration. In addition, PbAc increased the levels of apoptotic markers Bax, Caspase-3 and APAF-1 and decreased the level of Bcl-2, while SA improved this situation. It was observed that PbAc significantly reduced sperm quality in rats, while SA positively affected sperm quality. CONCLUSION: As a result, SA administered against PbAc-induced testicular dysfunction in rats can provide effective protection at doses of 25 mg/kg/bw and 50 mg/kg/bw.


Assuntos
Chumbo , Sêmen , Ratos , Masculino , Animais , Chumbo/metabolismo , Ratos Sprague-Dawley , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apoptose , Autofagia , Acetatos/farmacologia , Antioxidantes/metabolismo
11.
Iran J Basic Med Sci ; 26(10): 1227-1236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736509

RESUMO

Objectives: In the present study, it was evaluated whether morin has a protective effect on testicular toxicity caused by ifosfamide (IFOS), which is used in the treatment of various malignancies. Materials and Methods: For this purpose, 100 or 200 mg/kg morin was given to Sprague Dawley rats for 2 days, and a single dose (500 mg/kg) IFOS was administered on the 2nd day. At the 24th hr of IFOS administration, animals were decapitated and testicular tissues were taken and the status of oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy, and apoptosis markers were analyzed by biochemical, molecular, and histopathological methods. Results: According to the data obtained, it was determined that IFOS caused oxidative stress in testicular tissues. It was observed that inflammation, ERS, autophagy, apoptosis, and oxidative DNA damage occurred with oxidative stress. Morin treatment suppressed oxidative stress. Morin showed anti-inflammatory effects by reducing TNF-α and IL-1ß protein levels. It also increased the mRNA transcript levels of the ERS marker ATF-6, PERK, IRE1, GRP-78, and CHOP genes, and the apoptosis marker genes Bax, Casp-3, and apaf-1. It up-regulated the anti-apoptotic protein Bcl-2 gene and the cell survival signal AKT-2 gene. Morin caused a decrease in beclin-1 protein levels and showed an anti-autophagic effect. In addition, morin attenuated oxidative DNA damage and decreased 8-OHdG immune-positive cell numbers. Conclusion: As a result, it was observed that IFOS caused cellular damage by activating various signaling pathways in testicular tissue, while morin exhibited protective properties against this damage.

12.
Mol Biol Rep ; 50(10): 8305-8318, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37592178

RESUMO

BACKGROUND: Cadmium (Cd) is a strong toxic agent and causes serious damage to testicular tissues. Chrysin (CHR) is a natural flavonoid with many effective properties, especially antioxidant, anti-inflammatory and anti-apoptotic properties. The current study describes new evidence for the ameliorative effects of CHR on oxidative stress, apoptosis, autophagy and inflammation pathways in Cd-induced testicular tissue toxicity. METHODS: Thirty-five male Wistar rats were divided into five groups, control, Cd, CHR, Cd + CHR25, and Cd + CHR50. Cd was administered alone at a dose of 25 mg/kg body weight or in combination with CHR 25 mg/kg and CHR 50 mg/kg for 7 days. Cd and CHR were administered orally. Biochemical, molecular, and histological methods were used to investigate inflammation, apoptosis, autophagy, and oxidant pathways in testicular tissue. RESULTS: Cd increased lipid peroxidation, JAK-2/STAT-3 levels, inflammation-related NF-κB, TNF-α, IL-1ß, IL-6, COX-2, and iNOS levels, AKT-2, FOXO1, Bax, Apaf-1 and Caspase-3 levels, autophagic Beclin-1, LC3A and LC3B. The Cd also caused a decrease in the activities of antioxidant enzymes and GSH levels, antiapoptotic Bcl-2 levels. CHR, on the other hand, had the opposite effect of all these Cd-induced changes. CONCLUSIONS: Overall, the data of this study indicate that testicular damage associated with Cd toxicity could be ameliorated by CHR administration.


Assuntos
Antioxidantes , Cádmio , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/toxicidade , Ratos Wistar , Estresse Oxidativo , Flavonoides/farmacologia , Inflamação/induzido quimicamente , Apoptose
13.
Iran J Basic Med Sci ; 26(9): 1098-1106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605724

RESUMO

Objectives: Sodium arsenite (SA) exposure is toxic to the body. Zingerone (ZNG) is a flavonoid with many biological properties found naturally in honey and plants. This study aimed to determine the effects of ZNG on SA-induced rat lung toxicity. Materials and Methods: Thirty-five male Sprague rats were divided into Control, SA, ZNG, SA+ZNG25, and SA+ZNG50 groups (n=7). SA 10 mg/kg and ZNG were administered at two doses (25 and 50 mg/kg) (orally, 14 days). Analysis of oxidative stress, inflammation damage, apoptosis damage, and autophagic damage markers in lung tissue were determined by biochemical and histological methods. Results: The administration of ZNG reduced oxidative stress by increasing SA-induced decreased antioxidant enzyme activities, increasing Nrf-2, HO-1, and NQO1, and decreasing MDA level. ZNG administration reduced inflammation marker levels. Anti-apoptotic Bcl-2 increased and apoptotic Bax and Caspase-3 decreased with ZNG. ZNG promoted the regression of autophagy by reducing Beclin-1, LC3A, and LC3B levels. Conclusion: Evaluating all data showed that SA caused toxic damage to lung tissue by increasing inflammation, apoptosis, autophagy, and oxidant levels, whereas ZNG had a protective effect by reducing this damage.

14.
Environ Sci Pollut Res Int ; 30(45): 101208-101222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648919

RESUMO

Lead acetate (PbAc) is one of the top five most dangerous toxic heavy metals, particularly leading to kidney damage and posing serious health risks in both humans and animals. Sinapic acid (SNP) is a naturally occurring flavonoid found in fruits and vegetables that stands out with its antioxidant, anti-inflammatory, and anticancer properties. This is the first study to investigate the effects of SNP on oxidative stress, inflammation, apoptosis, autophagy and endoplasmic reticulum (ER) stress in PbAc-induced nephrotoxicity in rats by biochemical, molecular and histological methods. 35 Spraque dawley rats were randomly divided into five groups of 7 rats each: control, PbAc, SNP (10mg/kg), PbAc + SNP 5, PbAC + SNP 10. PbAc at a dose of 30 mg/kg body weight was administered via oral gavage alone or in combination with SNP (5 and 10 mg/kg body weight) via oral gavage for seven days. While PbAc impaired renal function by increasing serum urea and creatinine levels, SNP decreased these levels and contributed to the improvement in renal function. The administration of SNP reduced oxidative stress by increasing PbAc-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels, decreasing MDA levels, a marker of increased lipid peroxidation. SNP administration reduced NF-κB, TNF-α, IL-1ß, NLRP3, and RAGE mRNA transcription levels, NF-κB, and TNF-α protein levels that are among the PbAc-induced increased inflammation parameters. Decreases in antiapoptotic Bcl-2 and increases in apoptotic Bax, APAF-1, and Caspase-3 due to PbAc exposure, SNP reversed the situation. SNP reduced ER stress caused by PbAc by increasing PERK, IRE1, ATF-6, CHOP, and GRP-78 levels and made it tend to regress. SNP reduced autophagy damage by decreasing the Beclin-1 protein level increased by PbAc. The findings of the present study suggested that SNP attenuates PbAc-induced nephrotoxicity.


Assuntos
Antioxidantes , Insuficiência Renal , Humanos , Ratos , Animais , Antioxidantes/metabolismo , Rim , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chumbo/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Acetatos/farmacologia , Peso Corporal , Apoptose
15.
Parasite Immunol ; 45(9): e13002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461131

RESUMO

In this study, we aimed to investigate haematological, pro-inflammatory, inflammatory, anti-inflammatory and immunological responses in naturally Theileria annulata-infected cattle. The study material consisted of 25 Simmental cattle, 2-4 years of age, one of which was a control group consisting of healthy animals (Control group, n = 10), and the other was a Theileria group that include animals positive for Theileria annulata (Theileria group, n = 15). Haematological analysis (red blood cell [RBC], haemoglobin [HGB], haematocrit [HCT]), pro-inflammatory (tumour necrosis factor-α [TNF-α], nuclear factor kappa B [NF-ĸB] and interleukin-1 beta, [IL-1ß]), inflammatory (neutrophil-lymphocyte ratio [NLR]), anti-inflammatory (interleukin-10 [IL-10]) and antimicrobial peptide (CAMP) analyses were performed by using ELISA kit from blood samples. It was found that the rectal temperature of the Theileria group was found to be significantly higher (p < .001) than that of the control group. Haematological and biochemical analysis revealed that the RBC and HGB count and HCT percentage decreased (p < .001), while NF-ĸB (p < .001), TNF-α (p = .002), IL-1ß (p < .001), IL-10 (p = .012), NLR (p < .001) and CAMP (p = .037) levels increased in Theileria group compared to the control group. There was a strong correlation between NF-ĸB and TNF-α, NF-ĸB and IL-10, NLR and IL-1ß, NF-ĸB and CAMP, TNF-α and CAMP and IL-10 and CAMP. As a result of this study, it was revealed that a pro-inflammatory and immunological response also occurs along with the anti-inflammatory response in the inflammatory process.


Assuntos
Theileria annulata , Theileriose , Bovinos , Animais , Interleucina-10 , Fator de Necrose Tumoral alfa , NF-kappa B
16.
Environ Toxicol ; 38(11): 2656-2667, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37471654

RESUMO

In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular tissue of rats was tried to be determined. PbAc was administered at a dose of 30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and 10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration. According to our findings, while PbAc administration increased MDA content in rats, it decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1ß, TNF-α, and COX-2, which are among the inflammation parameters that increased due to PbAc, decreased with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc treated rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treatment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhibited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue and negatively affected spermatogenesis. When the sperm quality was examined, the decrease in sperm motility and spermatozoon density caused by PbAc, and the increase in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP treatment inhibited these changes and increased sperm quality.


Assuntos
Chumbo , Motilidade dos Espermatozoides , Ratos , Masculino , Animais , Sêmen/metabolismo , Testículo , Estresse Oxidativo , Antioxidantes/metabolismo , Apoptose , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Acetatos
17.
Environ Sci Pollut Res Int ; 30(38): 89479-89494, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37453011

RESUMO

This study aimed to determine the potential protective effects of chrysin (CHR) on experimental cadmium (Cd)-induced lung toxicity in rats. To this end, rats were divided into five groups; Control, CHR, Cd, Cd + CHR25, Cd + CHR50. In the study, rats were treated with CHR (oral gavage, 25 mg/kg and 50 mg/kg) 30 min after giving Cd (oral gavage, 25 mg/kg) for 7 consecutive days. The effects of Cd and CHR treatments on oxidative stress, inflammatory response, ER stress, apoptosis and tissue damage in rat lung tissues were determined by biochemical and histological methods. Our results revealed that CHR therapy for Cd-administered rats could significantly reduce MDA levels in lung tissue while significantly increasing the activity of antioxidant enzymes (SOD, CAT, GPx) and GSH levels. CHR agent exerted antiinflammatory effect by lowering elevated levels of NF-κB, IL-1ß IL-6, TNF-α, RAGE and NRLP3 in Cd-induced lung tissue. Moreover CHR down-regulated Cd-induced ER stress markers (PERK, IRE1, ATF6, CHOP, and GRP78) and apoptosis markers (Caspase-3, Bax) lung tissue. CHR up-regulated the Bcl-2 gene, an anti-apoptotic marker. Besides, CHR attenuated the side effects caused by Cd by modulating histopathological changes such as hemorrhage, inflammatory cell infiltration, thickening of the alveolar wall and collagen increase. Immunohistochemically, NF-κB and Caspase-3 expressions were intense in the Cd group, while these expressions were decreased in the Cd + CHR groups. These results suggest that CHR exhibits protective effects against Cd-induced lung toxicity in rats by ameliorating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress and histological changes.


Assuntos
Intoxicação por Cádmio , Cádmio , Ratos , Animais , Cádmio/toxicidade , Caspase 3/metabolismo , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Pulmão/metabolismo , Biomarcadores/metabolismo , Apoptose , Estresse do Retículo Endoplasmático
18.
Gene ; 875: 147502, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37224935

RESUMO

Cadmium (Cd) is a toxic heavy metal that targets the kidney directly in the body. Chrysin (CHR) is a natural flavonoid with many properties such as antioxidant, anti-inflammatory and anti-apoptotic. The current study discloses new evidence as regards of the curative effects of CHR on Cd-induced nephrotoxicity by regulating oxidative stress, apoptosis, autophagy, and inflammation. Cd was administered orally at a dose of 25 mg/kg body weight alone or in combination with orally administered CHR (25 and 50 mg/kg body weight) for 7 days. Biochemical, molecular, and histological methods were used to investigate inflammation, apoptosis, autophagy, and oxidant pathways in renal tissue. Renal function tests were also evaluated. Cd caused an increase in serum toxicity markers, lipid peroxidation and a decrease in the activities of antioxidant enzymes. Nrf-2 triggered inflammatory responses by suppressing HO-1 and NQO1 mRNA transcripts and increasing NF-κB, TNF-α, IL-1ß and iNOS mRNA transcripts. Cd caused inflammasome by increasing RAGE and NLRP3 mRNA transcripts. In addition, Cd application caused apoptosis by increasing Bax, Apaf-1 and Caspase-3 mRNA transcripts and decreasing Bcl-2 mRNA transcript level. It caused autophagy by increasing the activity of Beclin-1 level. CHR treatment had the opposite effect on all these values and reduced the damage caused by all these signal pathways. Overall, the data of this study indicate that renal damage associated with Cd toxicity could be ameliorated by CHR administration.


Assuntos
Antioxidantes , Cádmio , Flavonoides , Nefropatias , Animais , Ratos , Antioxidantes/farmacologia , Apoptose , Proteína X Associada a bcl-2/metabolismo , Peso Corporal , Cádmio/toxicidade , Caspase 3/metabolismo , Flavonoides/farmacologia , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Ratos Wistar , RNA Mensageiro/genética , Transdução de Sinais , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico
19.
J Biochem Mol Toxicol ; 37(5): e23326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808657

RESUMO

Our experimental objective was to investigate the hepatotoxic effect of vincristine (VCR) administration in rats and determined whether combined therapy with Quercetin (Quer) ensured protection. Five groups with seven rats each were used for this purpose, and experimental groups were formulated as follows: Control group; Quer group; VCR group; VCR plus Quer 25 group; VCR plus Quer 50 group. The results showed that VCR significantly increased the activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes. Besides, VCR caused considerable increases in the malondialdehyde (MDA) contents, along with significant decreases in reduced glutathione levels, superoxide dismutase, catalase, and glutathione peroxidase enzyme activities in the rat livers. Quer treatment in VCR toxicity markedly decreased the activity of ALT, AST, ALP enzymes, and MDA contents and enhanced the activities of antioxidant enzymes. The results also showed that VCR significantly increased the levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3 and decreased the expression of Bcl2 and levels of Nrf2, HO-1, SIRT1, and PGC-1α. Compared to the VCR group, Quer treatment exhibited significantly lower levels of NF-kB, STAT3, and the expression of caspase 3, Bax, and MAP LC3, and higher levels of Nrf2, HO-1, SIRT1, and PGC-1α. In conclusion, our study demonstrated that Quer could alleviate the harmful effects of VCR via activation of NRf2/HO-1 and SIRT1/PGC-1α pathways, and via attenuation of oxidative stress, apoptosis, autophagy, and NF-kB/STAT3 pathways.


Assuntos
Antineoplásicos Fitogênicos , Doença Hepática Induzida por Substâncias e Drogas , Quercetina , Vincristina , Animais , Ratos , Vincristina/efeitos adversos , Masculino , Ratos Sprague-Dawley , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Quercetina/administração & dosagem , Fígado/química , Fígado/enzimologia , Fígado/patologia , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos Fitogênicos/efeitos adversos
20.
Chem Biodivers ; 20(3): e202200982, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808882

RESUMO

The ameliorative effects of hesperidin (HES) on the toxicities created by sodium fluoride (NaF) in the testes tissue of rats were studied via oxidative stress, apoptosis and endoplasmic reticulum (ER) stress pathways. The animals were divided into five distinct groups (7 rats in each group). Group 1 was control group, group 2 received NaF-only (600 ppm), group 3 received HES-only (200 mg/kg bw); group 4 received NaF (600 ppm)+HES (100 mg/kg bw) and group 5 received NaF (600 ppm)+HES (200 mg/kg bw) for 14 days. NaF-induced testes tissue damage by reducing activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and levels of glutathione (GSH), and increasing lipid peroxidation levels. NaF treatment significantly downregulated the mRNA levels of SOD1, CAT and GPx. NaF supplementation caused apoptosis in the testes by upregulating p53, NFkB, caspase-3, caspase-6, caspase-9, and Bax and downregulating Bcl-2. Furthermore, NaF caused ER stress via increasing mRNA transcript levels of PERK, IRE1, ATF-6 and GRP78. NaF treatment led to autophagy via upregulation of Beclin1, LC3A, LC3B and AKT2. In testes tissue, however, co-treatment with HES at doses of 100 and 200 mg/kg significantly reduced oxidative stress, apoptosis, autophagy and ER stress. Overall, the findings of this study suggest that HES may help to reduce testes damage caused by NaF toxicity.


Assuntos
Hesperidina , Fluoreto de Sódio , Masculino , Ratos , Animais , Fluoreto de Sódio/toxicidade , Testículo , Hesperidina/farmacologia , Estresse Oxidativo , Apoptose , Estresse do Retículo Endoplasmático , Autofagia , RNA Mensageiro , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...